Anti-Stokes Emission Always Outputs More Energy than the Operator Inputs Anti-Stokes emission, e.g., has been verified overunity (the medium outputs more energy than the operator inputs) for more than 50 years. In most (but not all) cases, at the time a photon is absorbed by a molecule in this effect, a collision with one or more other molecules adds extra energy to the absorbing molecule. Consequently the absorbing molecule receives excess energy over and above what it received from absorbing the photon, and enters a higher excited state than it would have entered from the absorption alone. That means that the molecule has collected additional excess energy in its "superexcited" state. The molecule is then free to decay from this superexcited state and emit a more energetic photon than it originally absorbed. This does indeed happen and is quite rigorously proven. However, usually in such a medium there are other Stokes emission processes ongoing, where a molecule absorbing a photon from its environment or input, simultaneously has its own kinetic energy reduced by collisions, and so it gives up energy as it absorbs energy. Hence it may enter an excited state less than it would have entered from absorbing the photon alone. Therefore this "subexcited" energy state can subsequently decay to emit a photon less energetic than the one it absorbed. So on the average, the entire system most often does not produce net overunity, even though certain reactions in that system continually do. However, since the molecules in the system are serving as (1) energy collectors and (2) energy emission gates, the situation where anti-Stokes emission is occurring is ripe for including an additional process for the receipt of excess energy freely from the external environment, other than just in one part of the medium from another part. One should also examine meticulously those processes where the "inner energy of the molecule" is said to be furnishing the excess energy in anti-Stokes emission, but no changes are occurring in the molecules in other words, those cases where the excess energy taken from the inner parts of the molecule is continually replenished freely. Note that the energy balance in the "net underunity" case so that net COP remains £ 1.0 will depend on the medium's molecules not receiving any net additional excess energy from the external environment in free Poynting radiation form, and specifically from ping pong and asymmetrical self-regauging within the medium and between its various molecules. If it does receive the excess energy, then the anti-Stokes emission effect which is itself a "gating" process for emitting excess energy added to the molecule can increase and predominate, and the system will develop COP>1.0. This will occur over and above the contributions of the molecular collisions, which may still on the average balance out. We quote from a book by Dake and DeMent: However, you will not find that geometrical regauging reaction presently pointed out in the literature. Instead, conventional scientists avoid the issue by only describing and analyzing the anti-Stokes emission processes where the overall system remains in local thermodynamic equilibrium and is not converted into an open dissipative system. Therefore on the whole the system does not freely receive excess energy from the environment at least in the usual restricted modeling. But in many cases, an adroit inventor may uncover ways to convert certain kinds of anti-Stokes emission systems to net overunity operation, by introducing the asymmetrical self-regauging operation. The basic requirements are:
Patterson's patented process utilizes ping pong also, as we pointed out at the New Energy Symposium in Denver, and if desired can be considered a special case of anti-Stokes emission where local equilibrium of the system is broken, and where self-regauging and excess extraction of energy from the vacuum does occur. A Patterson system is therefore a legitimate open dissipative system, once the conditions necessary for asymmetrical self-regauging are established. In his best unit, palladium-clad plastic microspheres also absorbed hydrogen ions from the fluid, thereby becoming charged capacitors and source dipoles. Any such dipole steadily radiates Poynting energy extracted from the vacuum, if we apply particle physics and treat the charges as broken symmetries in the fierce energy exchange between charges and vacuum. Hence as they absorb positive charges, the palladium-clad microspheres become Poynting energy flow generators, adding a component of excess energy (extracted directly from the vacuum) into the system. The system does not violate the conservation of energy law, by outputting more energy than the operator inputs, because the system does receive and output excess energy from the vacuum environment. His best machine is reported to have produced a demonstrated COP = 1200. Patterson holds several patents on the devices and processes. In a Patterson system, the self-regauging and ping pong are evidenced by (1) the lengthy time required to "grow" the output to the maximum stable operation zone, and (2) the lengthy time required for the output to gradually decay away after the electrical power cord is disconnected. Another particularly interesting application of asymmetrical self-regauging is given by lasing without population inversion, specifically as set forth by Letokhov, Lawandy, and others. Letokhov, e.g., for three decades has called this process and similar processes "negative absorption by the medium." Apparently he had to use such a tortuous term in his papers, to prevent stating "excess emission by the medium," which is actually what happens. Use of the more appropriate term would have led to rejection by referees, who would have reacted as if it were "perpetual motion." Even the arch critics who scream "perpetual motion!" begrudgingly allow what they euphemistically call the "false perpetual motion machine" which by their "definitions" is simply an open dissipative system freely receiving and using excess energy from the environment. Lawandy et al. have shown a particularly simple and beautiful bench-top experiment which can be performed in any university optics laboratory for a very nominal sum (perhaps twenty dollars). (see the Nature article by Lawandy et al.) The only tricky part is to filter TiO2 particles through a screen and size them so that their stimulated resonance frequency matches the frequency of the optical laser utilized in the experiment. Further, the experiment works every time. Lawandy has filed several very fundamental patents on embodiments and examples of such processes, without ever using the term "asymmetrical self-regauging".
|